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positive (stretching of the lowest filament) reduced moment decreases with increasing 
v , while the numerical value of the maximum negative moment increases just as in the 

case of a semi-infinite beam discussed above. 
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It is shown that neutral shock waves, on which the plastic deformations are con- 
tinuous, and waves on which the.plastic deformations are discontinuous, can 
exist in ideal and hardened elastic-plastic media. Conditions for the existence 
of waves of the second kind are written.down, the velocities of all the mentioned 

waves are determined in ideally plastic bodies for arbitrary convexity of the 
flow and Tresca conditions, and in hardened bodies for kinematic and isotropic 
hardening. Relationships are obtained for the discontinuities upon passage through 
the wave surface. 

The behavior of shock waves during propagation under Mises and Tresca flow 
conditions is investigated by using the kinematic second-order compatibility con- 
ditions. It is shown that the shock wave intensity varies according to laws of 
geometric optics. 

Questions of shock wave propagation in elastic-plastic media have been exa- 
mined in [l - 31. Relationships on the shock waves in hardened elastic-plastic 
bodies have been derived under the assumption that simple loading occurs on 

the shock Cl]. Reltionships on shock waves in plane ideally elastic-plastic bod- 
ies have been obtained in 83 by using the theory of generalized functions. The 
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results of [l, 21 do not agree. The relationships proposed in [l] impose a lesser 
quantity of constraints on the shock wave parameters as compared with the results 
obtained in [Z]. These relationships were utilized in [3] in solving the problem 
of oblique impact on an ideal elastic-plastic half-space. 

Fundamental relationships on shock waves in elastic-plastic bodies are obtained 
below from thermodynamic oonsiderations. 

1. Let us consider an ideal elastic-plastic material. The total deformations consists 
of elastic and plastic parts 

eij = t?ije + t?ijP = (Ui, j + Uj, i) / 2 (1.1) 

The elastic deformations are connected with the stresses by means of Hooke’s law 

Qij = hekkeiC& + 2/Mjje (1.2) 
In the plastic domain the stresses satisfy the plasticity condition 

f (ad) = k (1.3) 

The flow surface (1.3) is assumed nonconcave in the stress space and independent of 
the first invariant of the tensor oif. The plastic strain rates are connected with the stre- 
sses by means of the associated flow law 

QjP = qaf /hij = $fij (1.4) 

The relation between the stresses and strain rates can be represented as 

S,j = Qtj - ‘Ia Gkk6tj = aD / OeijP (1.5) 
where D (ETj) is the dissipation function. The relationships (1.5) and (1.4) are equiv- 
alent [4], and D is a homogeneous function of first degree in Eij. 

The relationships (1.1) - (1.3) define the connection between the states of stress and 
strain in an elastic-plastic body in domains where the stresses and rates of displacement 
are continuous. If these parameters undergo abrupt changes in some domain, then it is 

necessary to rely upon thermodynamic considerations in the analysis. 
Following the ideas elucidated in [S, 61, the heat flow equation and the equation of 

the second law of thermodynamics are written as 

dU = Gijd?ij / p + dq”, dF=dU-d(TS) (1.6) 

TdS = dq” + dq’, dq’ e rijde$’ / p > 0 

Here U is the internal energy, F is the free energy, T is the absolute temperature, S 
is the entropy, p is the density, dq” is the external heat influx, rij are the compon 
ents of some tensor characterizing energy dissipation. For an ideally plastic bodyrii = 
= oij. Henceforth, the strains are assumed small, and the Lagrange representation is 
utilized. 

Let us consider a shock wave in an elastic-plastic material (a shock wave is understood 
to be a surface being propagated in space on which the displacements are continuous 
but the velocities and stresses undergo discontinuities). The “plus” and “minus” super- 
scripts henceforth denote values of the quantities ahead of and behind the wave front, 
respectively. 

Let us write the relationship on surfaces of strong discontinuity which has been obtained 
in [S]. The mass conservation condition 

p+c+ = p-c- (1.7) 
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should be satisfied on the shock. Since p = p0 (i + ekkh then because of the smallness 
of the strains on the shock p+ = p- = pO. It follows from (1.7) that c+ = c- = ~0, i.e., we 

neglect the change in velocity of wave motion upon passage through the front of the wave 

surface. 
Now the condition of momentum conservation can be represented as 

i5ijl Yj+ PC [vi] = O7 [Vi] = vi+ - v; (1.8) 

Here and henceforth, the square brackets denote the difference between the appropriate 
quantities on both sides of the surface of discontinuity, vi is the velocity of material 
point motion, and vi is the unit vector of the normal to the surface of discontinuity. 

Following [S], we write the law of energy conservation as 

(~5ijvil yj - P (‘/~ [Vi”i] + tv]) c - [~,I = O U.9) 

where qn+ and Q*- is the external influx of additional specific energy through the 
surface of discontinuity. Neglecting effects connected with heat exchange, it is possible 

to put [q,] = 0 as well as dqe = 0 in the relationships (1.6) for elastic-plastic bodies. 
let us compute the magnitude of the internal energy jump from (1.6) by assuming 

that the relationships (1.1) - (1.5) hold upon passage from the state e$f to the state 

t$ .This will hold if the rheological model of the body does not change within the 
transition layer simulating the shock wave. Separating the total strain in (1.6) into elas- 
tic and plastic for dqc = 0, we obtain 

$U = oijde,je + aijdeij” = ‘/zdaijeiie + 5 ijdeijP 

Hence 

P[Ul =f [3ije*iel + A9 A = T @eij* 
et 

P- e, = eij , 

P+ . 
e2 = eij 

(1.10) 

From the second law of thermodynamics there follows that A < 0. 
Let us note that the jump in internal energy is determined from (1.10) if the integral 

in the right side of (1. IO), which depends on an unknown path of integration in the plastic 

strain space, is known. 
From the Cauchy formula and the kinematic and geometric compatibility conditions 

for the jumps in total strains, we have 

[Qjl = [eij”] + [eijPl = - ‘/a ([vi1 Vj + [vjl yi) C-l (1.11) 

From (1.2) there follows 

[aijl = h iekkel hj + 2cl [%“I (1.12) 

Utilizing (1.8), (1.10) - (1.12) and the reciprocity relationship (o$eF = o$:T) the 
energy conservation equation (1.9) can be represented as 

- */s (Sij+ + Sii-) [eijP] + A = 0 (1.13) 
Let US extract the path for which the functional A takes the maximum value, out of all 
possible paths connecting the points efi+ and eK . The Euler variational equation for 

the functional A is d 3D --= 
dz cYeijP 

o (1.14) 
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where Z is the arclength of the trajectory ei+J (z) in the plastic strain space. It follows 
from (1.5) and (1.14) that the maximum value of the functional A is achieved on the 

path for which S,j = COW& and we obtain from (1.10) 

max A = Sij [eijP] (1.15) 

Let US compute the maximum of the quantity B = - l/s (Sij’ + Sij-) ]eijp] for 
fixed values of ]eijPI and under the conditions that Sij+ and Sij- do not exceed the 
yield point 

f hi+) Sk, f (aij-) Sk 
By determining the conditional extremum B we obtain that oif+ and Uij- should satisfy 
the relationships 

[eij’] = Ylaf /&Qj - = Ysaf /C&j+ (1.16) 

where yr, Y2 are undetermined Lagrange multipliers. 
If the plasticity condition (1.3) is convex, then it follows from (1.16) that Sij’ = 

ZZ s. rJ - = Si,, and 
max B = - Sij [eijP] (1.17) 

Since the strain rates are proportional to [eig] on the path for which the functional 
A takes on the maximum value, then the values of S,j in (1.15) and the values of 

Si, determined from (1.16) should agree. This latter results from the equivalence rela- 

tionships of theories constructed by using the plastic potential and the associated flow 

law [41. 

Since max A = --ax B, the equality (1.13) can only hold under the conditions that 
A and B take on the maximum values simultaneously or [eip] = O.Therefore if 
[grill = 0 and [eif] # 0, then (1.9) is satisfied only under the condition that the stresses 
on both sides of the surface of discontinuity satisfy (1.16). 

If a plastically incompressible body has a convex flow surface, then it follows from 
(1.16) that [S,,] = 0 on the surface of discontinuity. If the plasticity condition of an 
isotropic body has a nonconcave portion, then (1.16) may also be satisfied even under 
the condition that ]eijP] is orthogonal to the flat portion of the flow surface. Then it 
follows from the isotropy of the tensor relationship (1.16) that the direction cosines of 

the principal axes of the tensors [eiF], Si; and Sif agree; the principal values of 

Si+ and Si- can differ, however Si+ [eip] = Si- [ep] since [S,] and[ei 1 are 
orthogonal. 

It follows from the above that shock waves of two kinds are possible in ideal elastic- 
plastic bodies; neutral waves and waves on which the plastic strains undergo a disconti- 
nuity. In the latter case, the stress deviators are continuous on the surface of discontin- 

uity if the plasticity condition is convex. For nonconcave plasticity conditions, the dir- 
ection cosines of the principla axes of the stress tensor are continuous on the surface of 
discontinuity. The jumps in the plastic strains are connected with the stresses by means 
of the relationships (1.16). 

2. Let us examine the corollary of the results obtained above for media satisfying 
the Mises and Tresca platicity condition. 

If the plastic strains are continuous on the shock, then 

[eijP] = 0, [eij”] = [eij] = - ([Vi] Vj + [Uj] Vi) /2C 

There hence results from (1.12) 
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-C [$I = h Ivkl vk&j f p ([vi] vj + [vj] vi) (2.4) 

The relationship (2.1) should be considered jointly with (1.8). Equations (1.8) (2.1) 
agree identically with the relationships (1.8). (1.9) in n], hence let us limit ourselves 
to presenting the final result. 

Irrotational and equivoluminal neutral shock waves can exist in an elastic-plastic 
body. An irrotational wave is propagated with the velocity c = d (h f 2~) / p, where 

[Vi1 = WI, C [$j] = - W (AA& + 2pViYj) (2.2) 

Here e) is a quantity characterizing the wave intensity. An equivoluminal wave is pro- 
pagated with the velocity c = Jfp / p, where 

[Vi] l’i = 0, C [a,j] = - p([ojl Yj + [vjl yi) (2.3) 

In contrast to elastic shock waves, the plasticity condition imposes a constraint on the 
quantities o and [Q] . Let us examine materials satisfying the Mises condition 

SijSij = 2K2 (2.4) 

From (2.2). (2.3) we obtain. respectively 

CSij- = C&j+ + 2p.O (YiYj - l/s hij) (2.5). 

C&j- = C&j+ + p([vi] Vj + [vjl yi) 

The loadings Sif- on the wave satisfy condition (2.4), from which 

pw = s/4c 
C 

- Sij+ViVj i_ 
v 

Sij+ViVj + 4 (2/C’ - Sij+Sij+)) 

2~’ [vi] 1~~1 + 4pcSij+ [vi] Vj - 2k2 + Sij+Sij’ = 0 

(2.6) 

(2.7) 

The relationship (2.7) imposes constraints on the possible direction of [Vi]. 
Let us note that, as has been shown in [1, 8, 91, the maximum velocfty of loading 

wave propagation in elastic-plastic media equals v (h -I- 2~) / o, hence, the perturba- 
tions behind the front of an irrotational shock wave, and the shock front itself cannot 
exert an influence on the state ahead of the wave front, and the quantities S$ are de- 

termined from the solution of the elastic problem. The intensity of the loading shock 

is then determined by (2.6), and the displacement velocities and stresses behind the 
shock front are determined from (2.2). 

Upon considering the unloading waves Sij-S’ij- < 2ka, from which 

COSfj+ViVj + ‘13 pW2 < 0, 2CSij+ [vi] Vj + CL [vkl [UC] < 0 (2.S) 

The connection between the shock wave parameters and the plastic strain rate jumps 
follows from the second order kinematic compatibility conditions. To obtain this connec- 
tion is no different than from the corresponding reasoning in p]. 

For irrotational and equivoluminal waves this connection is written as (the relation- 

ships (3.8). (3.11) in PI) 

where 8 is the mean 

PC (2.9) 

6 Iv.1 
1 = ~62 [vi] + C (r&k] Yj - [Ed,] V,V,‘i) bt 

(2.10) 

curvature of the wave surface. For the loading wave [e$] = - et’ 
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it follows from the associated flow law that er = *Pa/ / aa,, while (2.9) is used to de- 
termine the quantity II, for irrotational loading waves since cu, Sij- are known on the 
wave surface, In the case of equivoluminal loading waves, we have the differential 

equations (2.10). which should be considered jointly with the associated law and (2.7) 
under the assumptio that the Sij+ are given, for the determination of the parameters 

[at] and cb behind the surface of discontinuity. On the unloading waves [eg] = er and 
(2.9), (2.10) should be considered as differential equations to determine o and [vi] res- 
pectively. 

Let us examine shock waves on which plastic deformation occurs. Let us assume that 
the state of stress in the body corresponds to the yield surface of the Tresca plasticity 
condition 

(h - a, = 2k (2.11) 

The stress tensor components ai, are connected to the principal stresses by the relation- 
ships Qij = G1 lilj + a,mimj + cS&nj (2.12) 

where li, ni, n, are the direction cosines of the principal directions of the tensor UQ, 
where 

timi = lint = mini = 0, l&i = mimi = nini = 1 (2.13) 

It follows from (1.8). (1.12). (2.11) and the continuity of the direction cosines of the 
principal directions of the tensors Sij+, S,j-, le;jPl . 

C ISI l&j - tZ.$j) + C [S] ni?Zj = - h [LJr] V&j - 

- p {[Vi] Vj + [Vj] Vi - Y (lilj - mimj)} (2.14) 

[%I tvi - nlcoscp)+[q]nicOscp+pc[q] -0, COS~=?liVi 

Let us select a coordinate system xi coincident with the principal axes 2, = m, = 

= n, = 1. Equations (2.14) are converted to 

lVf] Vj + [UjJ Vi = 0 (i # i) (2.15) 

c [ail + h L”kl Vk + 2U [vi] Vi + (ai1 - &J Py = 0 
diVi = - PC [%I (not summed over i ) (2.26) 

In order for the homogeneous system (2.15) to have nontrivial solutions, its determinant 

should vanish, hence vlvzva = 0 Let us assume that vi = 0, zia # 0, v8 # 0. It follows 
from (2.15) that [u,] = 0. From (2.13) (2.16) we obtain 

3x+2 
Pa= 4*+3 CL, 

2x+1 
Goss Cp = yss = -- ; 

4x + 3 
+ (2.17) 

bet us assume that va = 0. It follows from (2.13) (2.15) (2.16) that 

Pea = (X + 1) p, V2 = IV,1 = 0 (or Vi = [u,] = 0) (2.18) 

It is easy to see that the plastic deformations are continuous in the remaining cases. 
Substituting (2.17) (2.18) into (2.14) we obtain for the first and second waves, respec- 
tively 

c IO,1 = - c [a,1 = - (33L + 2p) 0 

[%I = I-- 2 I?‘@% + 1) (4% + 3) ni + (4x + 3) vi} 0 (2.19) 
c [%I = - (A + P) 6% c [53] = -ho, [Vi] = wvi (2.20) 

Let us examine the change in the quantity 0 during wave propagation. From (1. l), (1.2) 
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(1.4) follows 

[cij, t] = h [uk, k] &j + p (I%, jl + [%,il - cyfijl) (2.21) 

The equations of motion are 

Qtj, j = Pi, t (2.22) 

Let us differentiate (2.11) and (2.13) with respect to time and the coordinates, and let 
us form the differences of the corresponding equations written on both sides of the wave 
surface. Utilizing these relationships and the second order compatibility condition, we 
obtain from (2.21). (2.22) 

- CM, (b+j - ninj) - cM,ninj - c ([al] - [as] - QI+ + QS+) (ainj + ajni) + 

+ 2kc (bimj + bjmi) - xLkVh6ij - /A (LiVj $ LjVi) + 2~ [$I (ZiZj - mimj) = 

= A*j = - (Sij - ni7Zj) 6 [S,] / 6t - ninjd [o,]/& + ([a,] - [OS]) ($+nj+), t + 

$ h?*’ [vkl, a skpbj + cl&!“’ (lvil, ax@ f [ujl, a “ip) (2.23) 

M, (ys - n~coscp)+M,n~cosq,+(Ia,I-_~~l--a,++ 

Here 

+ as+) (Q cm 9 + UkYk%) - 2k (biTTZ,Vk + mib,Vk) + PCLi = 

= bi = p6 [Vi] / rst - g@ [a,], a (“@ - n&@nk) 1 

- gap [Sl,?a %pni% + ([%I - [53]) h+%+), j (2.24) 

Let us multiply (2.23) by 6ij, n,nj and (2.24) by ni, Vi* Eliminating M,, MS, LkVk, 

Lk& aknk from the obtained relationships, and taking (2.17) and (2.18) into account, 
we obtain for the first and second waves respectively 

At& Sina ‘p - Aijninj (1 + COS’(p) + 2C (Bkvk - 2Bkvk COS (p) = 0 

Akk - Aijninj $- 2CBkVk = 0 

By using (2.19) (2.20) these equations can be represented as 

6w / dt = CQW 

Therefore, the intensity of both waves changes according to the laws of geometric optics. 
Let us assume that a convex plasticity condition holds. It hence follows from (1.12) 

C [$j] = - h [Uk] l’k]&j - p ([vi] Vj + [uj] Vi + c feijPl) (2.25) 

Since [Sij] = 0, then [cij] -= r/s [okr] 6ij , and (2.25), (1.7) become 

‘/a C [Gkk] 8ij z - h [u,l v$ij - CL ([vi1 Vj + [UjI vi + C [%*I) (2.26) 

‘/a [akk] "i f PC [UiI = 0 (2.27) 

Eliminating the quantities [vi] from (2.26) by using (2.27) we obtain 

i/a PC2 [chk] 6ij = l/s h [okkl &j -t 2/3 p [okkl vivj - I-1 IeijP] (2.28) 

Equating the subscripts i and j in (2.23) we obtain the wave propagation velocity as 

PC2 = h + 2la P (2.29) 
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For the Mises plasticity condition it follows from (2.4) and (1.6) that on the surface of 

discontinuity 
sij = 2 [Qkkl C&j - QYivj) / 9 [$I (2.30) 

Therefore, the shocks on which a jump in plastic deformations occur can be propagated 
at the velocity (2.29) only when the state of stress (2.30) holds ahead of the wave front. 
Assuming the coordinate axes Xi to be selected such that the direction vi coincides with 

the x3 -axis and the directions lcl, ~2 lie on the wave surface, we obtain from (2.30) 

‘11 = ‘%2 = - 2s3, = a/9 [bkk] [$]-1, s,, = s,, = 0 

Consequently the considered shock can exist only under the condition that the wave sur- 
face contains two principal directions of the stress tensor and the complete plasticity 

condition oI = oz = os + 2 1/Fk holds ahead of the wave front. Let us note that - 
]ofil,] = 3 1/ 2k [+I f 11 o ows from the plasticity condition. 

An equation describing the change in the quantity O, and therefore also in all the wave 
characteristics during propagation, can be obtained by using the second order kinematic 
and geometric compatibility conditions. 

Omitting the tedious discussions carried out earlier in p, 9, 101 and above for the 

Tresca yield surface, let us limit ourselves to presenting just the final result 

60 I & = cS20 (2.31) 

It follows from (2.31) that the intensity of the considered wave changes according to 
laws of geometric optics. 

3. Let us examine a hardening elastic-plastic material whose loading surface is 

(Sij - qeij”) (Sij - ~eij”) :_ 2 (k + rE)” 
f 

(3.1) 

gr; w &ij"eij"dt; q, r = const 
0 

The loading surface (3.1) combines the kinematic hardening proposed in [ll, 121 and 
isotropic hardening. It follows from the associated flow law that 

&ij” = Y (Sij - Tleij") (3.2) 

From (3.1) we obtain for the quantity I/) 

Y = l/em/J&(k + re) 

It then follows from (3.2) that 

Sij = qeijP $- I/ZaijP (k + r&E) (E~;PQ~P)-‘/A 

The dissipation function corresponding to the loading surface (3.1) is 

D = 1/T(k -+ re) f/Eij”Eij” _t ve;j”e$’ (3.3) 

Let us consider the equality (1. X3). Taking account of (3.3) we have for the quanti- 
ties from (1.13) 

-__ 
.4 = fD& = 7 ].‘,Z(k + re) ~Eij”Ei;~dt + yqei;‘eijPdt = 

0 

= 1/L& - 

0 

+ r 1/2[&‘] - + Tl [eij’eij’] 

Let US compute the maximum of the quantity - 1/2 (Sij’ -k s,]-) [ei,iP] under the 
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condition that 

(3.4) 

The conditional extremum holds when the equality sign is achieved in (3.4) and for 

Sij* = qe$’ - v/2 [CijP] (k + rd)([@] [eij"])-'l' (3.5) 
The relationship (1.13) hence becomes 

fzk (T/[e& IeijP] i- [&I) $ 1/2 r )L~{(E+ + E-) [eiTPI [eijP] + [e2]} = 0 (3.6) 

The quantity [e] is the length of the loading trajectory in plastic strain space, and its 

maximum value 
bl = - l/[eijP] I@] (3.7) 

satisfies (3.6). 
It hence follows that shocks of two kinds can exist in hardening elastic-plastic bodies 
with a loading surface of the kind (3.1). These will be neutral waves on which the plastic 
strains are continuous, and waves on which (3.5) will hold, where [E] is determined acc- 
ording to (3.7). Taking account of (3.7); we obtain from (3.5) 

(3.8) 

It follows from (3.8). (1.12) that the connection between the stress and strain jumps is 

[Oijl = h iekkl bj + 3-h IQ1 (3.9) 

It follows from (3.9) that the velocities and discontinuities are the same for waves in a 
hardening elastic-plastic material as in an elastic material whose elastic moduli are 

computed by means of (3.10). 
Irrotational waves are propagated at the velocity 

Cl= I% + 2Pl)lP 

and the relationships 

[Vi] = OYi, Cl [6cjl = - O(hl6ij + 2plYiYj) (3.11) 

are satisfied on these waves. 
The equivoluminal waves are propagated at the velocity 

[Vi] vi = 0, cs f&j] = - PC1 (LLlil yj + Ivjl yZ) 

and the relationships 

cs= t/Pi/P 

hold thereon. 

(3.12) 

Utilizing (3.11) and (3.12), we obtain the jumps in plastic deformation from (3.8). On 
the irrotational and equivoluminal waves we obtain, respectively 

[eijP] = ~ TTzIr (+Bij - ViVj) , {QjP] = - 

IL1 (I’(1 vj + IOjl ‘i) 

rl+ -r/g, 
(3.13) 

Now, it follows from (3.5) that the state of stress 

5’ij = qeijP 3; (k + re) JfZ;(‘/, &j - ~i~j) 
Sij = rleijP t ([vi] Vj + [ujl vi) (A + re) ([%I [vrl)-“’ 

(3.14) 
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should hold ahead of the front of irrotational and equivoluminal waves. 
Therefore, exactly as in an ideally plastic medium, shocks in a hardening body with 

loading surface (3.1) can occur only in certain exceptional cases when the state of stress 

(3.14) holds ahead of the wave front. The intensity of these waves changes according to 
the laws of geometric optics. 

Let us note that it has been assumed in [l] for a hardening body that the stress trajec- 
tory in the space oij is a radial line upon passage through the surface of discontinuity. 

It follows from (3.8), (3.12). (3.14) that this hypothesis holds only under the condi- 
tion of coaxiality of the stress and strain tensors, i.e., in the general case the hypotheses 

of [l] will contradict the laws of thermodynamics for a hardening body with the loading 
surface (3.1). 

The authors are grateful to L. I. Sedov for useful comments and remarks expressed 
while discussing results of the research. 
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